LiDAR Data Extraction

Jason Krueger, CP Project Manager

Brief overview of Lidar and platforms

Building Extraction

Vegetation/Trees

Transmission/Distribution Lines

Design-grade Feature Extraction

Classified Point Cloud

ASSOCIATES

Bare Earth Point Cloud

Digital Elevation Model (DEM)

Digital Surface Model

Intensity Images

Fixed-wing Aerial Lidar Point Density

- 1 pt/sq meter = Standard 2-ft Contour Lidar
- 3-4 pts/sq meter = Standard 1-ft Contour LiDAR
- 4+ pts/sq meter = 3D buildings & tree canopy extents
- 15 pts/sq meter = detailed veg. analysis
- 20+ pts/sq meter = elec/distribution lines, general planimetrics (1' = 50' scale)

40 pts/sq meter = curb & gutter, small utilities

Building Extraction

Whitefish Bay/ Glendale (Milwaukee)

Building Extraction

- For 3D extraction to shapefile: 4-16 pts/sq mtr is recommended. More points = better roof definition
- Although automated, still requires manual editing to clean up the polygons & roof planes
- Tree obstructions can cause problems with classification & extraction

Vegetation Extraction

Vegetation Extraction

Boulder, CO

20 pts/sq meter 1-ft contours Electric Distribution Vegetation Analysis

D ×

ь

Vegetation Extraction

- For mapping tree canopy/veg. height class extents:
 ~ 4-8 pts/sq mtr is recommended
- For calculating forestry statistics: ~ 8-20 pts/sq mtr is recommended
- Extreme terrain (mountains) adds complications

Electric Transmission/Distribution

Electric Transmission/Distribution

Electric Transmission/Distribution

Recommended Pt Density: 20pts/sq mtr (minimum) for transmission/distribution network mapping

- Limitations in high vegetation
- Difficult to extract smaller features for asset management (transformers, fiber optics, etc).

Engineering-Grade Planimetrics

IH-43, Milwaukee

40 pts/sq meter Plan & DTM to DOT Specs

West Fiebrantz Avenue

in

STOP

	* Int	MH MH	
Average dz Minimum dz Maximum dz Average magnitude Root mean square Std deviation	+0.039 -0.060 +0.269 0.059 0.088 0.081		*

Consider this...

Maybe you don't need all these bells and whistles, but maybe someone else in your organization can benefit.

Understanding the capabilities of Lidar and sharing ideas may help you secure funding from partners:

Other Municipal Departments? Parks & Forestry? Private Companies? Utilities? Academic Institutions?

